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The Price of Higher Order Catastrophe
Insurance: The Case of VIX Options
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ABSTRACT

We develop a tractable equilibrium pricing model to explain observed characteris-
tics in equity returns, VIX futures, S&P 500 options, and VIX options data based
on affine jump-diffusive state dynamics and representative agents endowed with
Duffie-Epstein recursive preferences. Our calibrated model replicates consumption,
dividends, and asset market data, including VIX futures returns, the average im-
plied volatilities in SPX and VIX options, and first- and higher-order moments of VIX
options returns. We document a time variation in the shape of VIX-option-implied
volatility and a time-varying hedging relationship between VIX and SPX options that
our model both captures.

SINCE THEIR INTRODUCTION IN 2006, options on the VIX index have become
the second-most traded contracts on the Chicago Board Options Exchange
(CBOE), surpassed only by S&P 500 (SPX) options.1 The trading volume in
VIX calls is about twice that of puts, reflecting a demand for speculative bets
on, or hedges against, market turmoil in the form of high volatility. In this
respect, VIX calls inherit some of the characteristics of out-of-the-money SPX
put options, but with some important differences. We investigate the differ-
ences in the pricing of SPX and VIX options in this paper with a primary view
toward understanding the factors that drive differences in the pricing of these
two types of catastrophe insurance contracts.
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VIX options prices display interesting features that differ markedly from
SPX. For example, while implied Black-Scholes volatility is always a convex
function of strike for SPX options, we document that the shape varies from con-
cave in normal times to convex in high-volatility periods for VIX options. VIX
options’ implied volatilities decrease monotonically with maturity and gener-
ally increase in the strike. The opposite is true for SPX.

The main objective of this paper is to try to understand these price charac-
teristics from the viewpoint of an equilibrium model. To this end, we derive an
equilibrium model that reproduces salient features of VIX futures and options,
SPX returns and options, and consumption and dividend data. The model fea-
tures a representative agent with Duffie-Epstein recursive utility preferences
who faces an endowment process with time-varying volatility (σt) and jumping
volatility to volatility with time-varying intensity (λt). The exogenous shocks to
consumption and its higher order moments drive asset prices. Specifically, the
aggregate stock market value obtains as the present value of a levered claim
to consumption with unpriced risks, as in Bansal and Yaron (2004). In equi-
librium, shocks that lead to higher uncertainty lower stock market valuations,
as to generate a higher conditional expected rate of return. This volatility-
feedback effect endogenizes the negative contemporaneous return-volatility
correlation (sometimes referred to as the leverage effect) that is observed to be
very strong in the data. The model also endogenizes the stock market volatil-
ity itself, and by extension, the forward-looking expected stock market volatil-
ity. Since the VIX index is interpretable as a conditional risk-neutral 30-day
forward-looking estimate of market volatility, the model is interpretable as an
equilibrium model of VIX. We use the property of the conditional cumulant
generating function for log stock price to obtain an explicit expression for equi-
librium VIX, and then apply a novel Fourier-type payoff transform analysis
to derive a semiclosed form (up to a single integral) formula for the value of
VIX options.

While there are countless studies of equity options market data, relatively
few papers study VIX options. Mencía and Sentana (2013) use a panel of VIX
futures and options to fit a no-arbitrage based time-series model. Lin and
Chang (2009) conduct a horse race between extant reduced-form models and
conclude that jumps in volatility help explain VIX options data. Park (2015)
uses information in SPX and VIX options to predict market returns (SPX),
VIX futures returns, and SPX and VIX options returns. Huang et al. (2019) de-
rive a diffusion-based no-arbitrage model to explain negative delta-hedged VIX
options returns. Both papers conclude that volatility of volatility risk is priced
with a negative market risk price. Bakshi, Madan, and Panayotov (2015) de-
rive a two-period model to price VIX options, attributing heterogeneity in be-
liefs to empirical evidence suggesting that both high- and low-volatility states
carry high-risk premia. Park (2016) specifies a reduced-form model for VIX di-
rectly in order to price derivatives. This paper, to our knowledge, is the first to
consider the pricing of VIX options, SPX options, the equity premium, the vari-
ance risk premium (VRP), and risk-free rates while maintaining the discipline
imposed by a fully-fledged consumption-based equilibrium framework.
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We start our analysis by first seeking to understand some basic properties of
ex-ante pricing information in VIX options, including the patterns of implied
Black-76 volatility surfaces. Among the interesting features of implied volatil-
ity data are the facts that they imply a severely right-skewed risk-neutral
distribution of VIX “returns.” The right-skewed distribution contrasts equity
return distributions that tend to be negatively skewed, as with the SPX. The
VIX returns distribution is skewed to the right much more heavily than SPX
returns are skewed to the left. Unlike equity options, VIX options display a
downward-sloping term structure: longer-term VIX options have lower implied
Black volatility than do short-maturity VIX options. This persuasive feature
persists irrespective of strikes and market conditions (i.e., high or low VIX).
We show that this feature is related to mean reversion in VIX and lack thereof
in the distributional assumptions underlying (Black-76) implied volatility com-
putation. In addition, the shock to implied volatility of volatility (VVIX) is
positively but imperfectly correlated with the level of VIX itself, suggesting
that VIX options prices contain a component independent of VIX. This actually
rules out single-factor conditional variance representations such as the mod-
els in Heston (1993), Bates (1996), and Eraker (2004). VIX options prices and
implied volatilities can move independent of VIX only if there is a separate
pricing factor that drives VIX options valuations. In fact, the essence of our
two-factor model is to capture the independent moves in VIX options prices.

A second element of our descriptive empirical evidence is a look at ex-post
realized VIX options returns. Huang et al. (2019) find that delta-hedged VIX
options returns are statistically significantly negative on average. Their inter-
pretation is that after controlling for directional volatility risk, volatility-of-
volatility risk is priced. We compute average rates of return on VIX calls and
find them to be significantly negative. The average returns on puts are mostly
statistically significantly positive. A long call position gives the buyer a positive
volatility exposure. We can think of the underlying for the options as being the
VIX futures, and thus, since VIX futures yield average rates of return that are
in the 30% to 40% range per annum (see Eraker and Wu (2017)), calls (puts)
should have negative (positive) expected return. Our analysis confirms this.

Both VIX calls and SPX puts constitute crash insurance. During a short
window of about 20 days in March 2020, the S&P 500 index fell almost 30%
from its high in January of the same year. Intraday VIX peaked at more than
80. Figure 1 shows the holding period returns to an investor who were to buy
and hold the respective option contracts over the height of the Covid-19 crisis
period. Some interesting features of the data emerge. For SPX, option prices
rose throughout March and dramatically so on March 16 and 18, days on which
the SPX index dropped 12% and 5.18%, respectively. A fortuitous investor who
bought the farthest out-of-the-money (OTM) SPX put with strike 1600 in the
beginning of March would have had more than a 200-fold increase in value
if she had sold out on either one of these days. Note that over this particular
sample window, returns are monotonically decreasing in strikes, so the 1600
strike put had the highest return, although this as well as the other low-strike
SPX puts eventually expired worthless. Investors in VIX options fared even
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Figure 1. Returns to OTM SPX puts and VIX calls during the height of the Covid-19
crisis, March 2020. (Color figure can be viewed at wileyonlinelibrary.com)
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better than SPX. The price of a 70 strike VIX call increased 400-fold from
March 2 to March 18, although this option would also expire worthless.

Figure 1 also suggests that the correlation between SPX and VIX options is
high, but imperfect. In particular, while prices of SPX puts peaked twice on
March 16 and 18, VIX calls showed a much larger spike on March 18. We find
that VIX calls correlate even less with SPX puts during calm market periods.
Foreshadowing our model’s implications, SPX options are impacted by cash
flow shocks that do not impact VIX options. The cash flow component is more
important than the discount rate component in driving SPX options during pe-
riods of low market volatility, whereas the opposite holds during periods of high
market volatility. The presence of cash flow shocks breaks the correlation be-
tween SPX and VIX options, particularly during low- and normal-volatility pe-
riods.

We analyze the factor structure of VIX call and SPX put returns. The re-
sults suggest that one distinct common factor drives about 80% of the varia-
tion across the two markets. We dub a second factor “SPX skew,” a third “ex-
treme tail,” and a fourth a pure “VIX” factor. We also study the relationship
between the crash insurance offered by OTM SPX puts and OTM VIX calls
using reduced-form regressions. Specifically, we study the extent to which SPX
options can be hedged with a delta hedge (SPY), a position in VIX futures, as
well as positions in VIX calls. We find that during calm market periods, VIX
calls do not correlate substantially with SPX puts, and thus, do not improve
on hedging performance. By contrast, during turbulent periods, VIX calls sub-
stantially reduce hedging errors. We compare these empirical results to results
obtained by simulating data from our model and find that the model replicates
the results. To understand these relationships better, we link SPX and VIX op-
tions returns to exogenous shocks to state variables in our model. In low-VIX
regimes, we find that both VIX and SPX options respond linearly to shocks. The
variance decompositions show that higher order polynomials of the innovations
in the state variables, which proxy for convexity, are important for explaining
option returns during high-VIX periods. This explains how VIX options can be
useful for hedging SPX positions (or vice versa) in periods of market distress.

Our model matches a number of observed moments of macro quantities and
asset prices, starting with the first two moments of aggregate consumption and
dividend growth, interest rates, and stock returns. It matches the consump-
tion and dividend growth and interest rate data up to negligible differences,
matches both physical and risk-neutral equity market volatility, and gener-
ates an equity premium and a VRP both close to those seen in the data. Our
model replicates the first two moments of VIX futures ex-post returns with rea-
sonable precision. It also accurately captures the SPX option-implied volatil-
ity curves. It further matches various moments of VIX option ex-post return
distributions, including mean, variance, skewness, and kurtosis. It matches
implied VIX volatility along several dimensions: the average at-the-money
(ATM)-implied VIX volatility (i.e., VVIX) is matched almost identically, and the
average implied volatility surface over maturity and strike is similar to what
we observe—it is concavely and vastly skewed to the right (consistent with
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an extremely right-skewed underlying VIX distribution), and it has a sharply
downward-sloping term structure. Remarkably, our model also reproduces the
change in the implied volatility curve (as a function of the strike) from con-
cave during low- and average-VIX periods to convex during periods of market
stress. We argue that this unique model implication is related to the flexibility
afforded by our two-factor model.

To derive our model, we first develop a general framework for pricing as-
sets under recursive Duffie-Epstein preferences with intertemporal elasticity
of substitution (IES) set to one under the assumption that state variables fol-
low affine jump diffusions, as in Duffie, Pan, and Singleton (2000). The model
builds on Duffie and Epstein (1992), Duffie and Lions (1992), and Duffie and
Skiadas (1994), shares similarities with the models of Eraker and Shalias-
tovich (2008), Benzoni, Collin-Dufresne, and Goldstein (2011), and Tsai and
Wachter (2018), but has a clear marginal contribution that it is an endowment-
based equilibrium model with (i) clearly stated affine state variable dynam-
ics and (ii) precisely characterized equilibrium value function, risk-free rate,
prices of risk, and risk-neutral state dynamics. We prove that our state-price
density is a precise IES → 1 limit of that approximately solved in Eraker and
Shaliastovich (2008). The recursive preference assumption implies that higher
order conditional moments of the economic fundamental, such as its growth
volatility and volatility-of-volatility, are explicitly priced in equilibrium. Since
VIX derivatives depend on these factors, this, in turn, implies that the former
carry nonzero risk premia.

The rest of the paper is organized as follows. Sections I and II describe
our sample of VIX options and presents reduced-form evidence, respectively.
Section III presents our equilibrium model of VIX option pricing. Section IV
presents results from our model calibration exercise, and Section V summa-
rizes our findings. The Internet Appendix2 contains our general theory as well
as model derivations and extensions.

I. Data

The sample was collected from the CBOE3 and consists of data sampled at
the one-minute interval over the period January 2006 to June 2020. The data
set consists of best bids, best asks, bid/ask quantities, and open high/low in
addition to contract characteristics over the one-minute intervals. The fact that
the data are time-stamped down to the minute interval mitigates the problem
of nonsynchronous quotes, which are often problematic in end-of-day data.

VIX options and futures are cash-settled to a special VIX computation with
ticker code VRO. VRO is computed from prices of constituent SPX options that
are compiled through a special auction that is held premarket on the VIX ex-
piration day, typically the third or fourth Wednesday of the month. This is in

2 The Internet Appendix is available in the online version of this article on The Journal of
Finance website.

3 See https://datashop.cboe.com for details.
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contrast to the VIX itself, which is computed from midpoints. While in theory
VRO should differ little from the open value of the VIX on the settlement day,
in practice it may. Griffin and Shams (2018) suggest that the market is prone
to manipulation since OTM SPX options can be traded cheaply while having a
comparably large impact on VRO.

Some remarks regarding the relationship between VIX futures and options
are in order. VIX futures market prices have no direct effect on VIX options—
both are settled to VRO. However, the fact that the underlying VIX index is
not a marketable asset has implications for both futures prices and options.
The most important impact on the prices of futures contracts is they do not
adhere to a standard futures-spot no-arbitrage parity condition. For example,
for a stock index value St , a τ -period futures price Ft (τ ) will satisfy

Ft (τ ) = Ste(r−q)(T−t), (1)

where r and q are the continuously compounding risk-free rate and dividend
yield, respectively. This implies that Ft (τ ) and St do not deviate by a substan-
tial amount.

For VIX futures with long maturities, however, the deviation between spot
VIX and VIX futures prices can be very large. Mechanically, this happens
because there is no way to arbitrage the deviations. Fundamentally, futures
prices should incorporate market participants’ expectations of mean reversion
in VIX. Prices can also reflect a risk premium. Whaley (2013) and Eraker and
Wu (2017) present evidence suggesting that expected returns on VIX futures
are substantially negative.

VIX options do not satisfy put-call parity with respect to the underlying VIX
index. They do, however, satisfy a version of put-call parity that includes the
same-maturity futures, namely,

Ct = Pt + (Ft − K )e−r(T−t), (2)

where Ct and Pt are, respectively, prices of calls and puts with strike K and
maturity T , and Ft is a T-maturity futures price. Keeping in mind that mean
reversion will imply that Ft is below spot VIX when spot VIX is high (and
vice versa), an ATM option (K = Ft) will have a strike that is below spot VIX
when spot VIX is high, and above spot VIX when spot VIX is low. The fact
that the underlying asset of a VIX option contract is a same-maturity VIX
futures contract implies that we should apply Black (1976)’s pricing formula to
compute implied volatilities.

II. Exploratory Data Analysis

A. Option-Implied Volatilities

To characterize the pricing of VIX options, we first study implied volatili-
ties. Figure 2 plots implied volatility for VIX options on two different days.
On November 12, 2008, the VIX was high at 65.48, and on April 26, 2017,
the VIX was low at 10.78. These days are typical of what we observe in high-
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Implied Vol. on November 12, 2008, 12:50pm (VIX=65.48)
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Implied Vol. on April 26, 2017, 12:50pm (VIX=10.78)
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Figure 2. Implied VIX volatility on November 12, 2008 and April 26, 2017. The shaded
areas represent the implied volatility computed from bids and asks. (Color figure can be viewed at
wileyonlinelibrary.com)

and low-VIX states in our sample. A number of features of the data are worth
commenting on.

First, in both cases, for a given strike, the implied volatility is greater for
short-maturity options. That is, the term structure of implied volatility is
downward sloping irrespective of the level of the VIX. To understand why this
is the case, note that Black-76 assumes that the underlying is a random walk.
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Table I
Average Implied Black-76 Volatility

The table reports average (annualized) implied Black-76 volatility for VIX options by maturity and
strike. The left panel reports results for data over the January 2006 to June 2020 period. The right
panel reports results for the benchmark VIX model simulated over 100,000 months.

Data ModelMaturity
(Months)
Strike 1 2 3 6 1 2 3 6

12 0.72 0.59 0.53 0.48 0.72 0.62 0.59 0.57
14 0.79 0.66 0.60 0.52 0.64 0.54 0.50 0.47
16 0.90 0.74 0.66 0.52 0.71 0.61 0.57 0.50
18 0.98 0.80 0.70 0.54 0.79 0.70 0.64 0.55
20 1.04 0.83 0.73 0.56 0.88 0.77 0.71 0.60
22 1.11 0.88 0.77 0.58 0.96 0.84 0.76 0.64
24 1.15 0.92 0.80 0.59 1.04 0.89 0.81 0.67
26 1.19 0.96 0.82 0.61 1.11 0.93 0.84 0.69
28 1.23 0.99 0.85 0.62 1.16 0.97 0.87 0.71
30 1.26 1.01 0.87 0.63 1.21 1.00 0.89 0.72
32 1.27 1.03 0.89 0.64 1.25 1.02 0.90 0.72
34 1.30 1.05 0.90 0.65 1.28 1.03 0.91 0.73
36 1.30 1.07 0.92 0.66 1.30 1.04 0.92 0.73
38 1.32 1.09 0.93 0.67 1.33 1.05 0.92 0.72
40 1.35 1.11 0.95 0.67 1.34 1.06 0.92 0.72

If a time series follows a random walk, its forecasted variance increases lin-
early with the forecast horizon. The downward-sloping term structure that
we observe in VIX options implied volatility therefore suggests that the mar-
ket does not think that VIX variance increases proportionally with the fore-
cast horizon.

Second, the shapes of the implied volatility functions are mostly convex in
the high-VIX case, especially at the left end of the strike, though they are
mildly concave to the right in the high-VIX/short-maturity case, as can be seen
in the red six-day maturity case in the top graph. In the low-VIX case, however,
the implied volatility functions uniformly form a concave frown rather than the
usual convex smile seen in equity options data, including the SPX.

Third, and perhaps most surprising, if we compare maturities in the 70- to
90-day range with relatively high strikes (say 40), we see that they were in
some sense more expensive in the 2017 low-volatility state than they were in
the 2008 high-volatility state. For example, both 69- and 97-day maturities in
the 40 to 50 strike range were trading at implied volatilities below 100% in
November 2008, while the 83-day maturity in the 40 to 50 strike range traded
at implied volatilities above 100% in 2017. Our model successfully replicates
all three main characteristics, as shown below.

The left panel of Table I shows the average VIX-implied volatility surface
over strike and maturity, which should largely inherit the characteristics of
the implied volatility surface in the low-VIX case that occurs a vast majority
of the time. As can be seen, the two predominant patterns for the low-VIX case
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Figure 3. Scatter plot of one-month VIX futures prices versus one-month ATM-implied
VIX volatility. (Color figure can be viewed at wileyonlinelibrary.com)

discussed above are visually evident: the term structure is sharply downward
sloping and the volatility surface is increasing and concave in the strike levels.
In particular, the fact that implied volatility keeps increasing in strike even for
very high strike ranges indicates an extremely right-skewed underlying VIX
distribution that cannot be rationalized without jumps.

Figure 3 shows the relationship between VIX level, as measured by one-
month futures prices, and ATM VIX-option-implied volatility. The color coding
shows data by year. As seen in the plot, there is generally a positive rela-
tionship, and the unconditional correlation is 0.48. However, the strength of
the relation between the futures level and the implied VIX volatility is time-
varying. By running a regression year-by-year, we find that the slope coeffi-
cients vary from a low of 0.01 in 2009 to 0.1 in 2014. This is not to be in-
terpreted as a causal relation: we do not believe that vol-of-vol, as measured
by ATM VIX volatility, varies deterministically over the calendar. Rather, the
evidence suggests that vol-of-vol, and hence VIX ATM-implied volatility, is re-
lated to some persistent factor that is imperfectly correlated with volatility
itself. In our structural model, therefore, we specify a structure in which ag-
gregate consumption growth volatility, σt , is driven by exogenous shocks with
two components. The first is a regular Cox-Ingersoll-Ross (CIR) style diffusion
term. Second, aggregate volatility is also discontinuous, with jumps arriving
at a rate λt , which follows an independent self-exciting diffusion process. In
equilibrium, both VIX and vol-of-vol are nonlinear functions of σt and λt . This
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modeling specification allows us to match not only the positive but imperfect
time-varying correlation between vol-level and vol-of-vol seen in Figure 3, but
also the implied volatility surface presented in Figure 2 and Table I.

B. Option Returns

B.1. Descriptive Evidence

Much like traditional asset pricing research, recent developments in op-
tion research emphasize risk premia associated with factor-shocks. Coval and
Shumway (2001) show that average returns to SPX options are statistically
significantly negative. Their paper shows that even delta-neutral straddles
that are immune to tail-risk experience large negative returns. Bondarenko
(2003) reports Sharpe ratios of −0.38 and −3.93 for 4% and 6% OTM SPX puts,
respectively, while Eraker (2021) finds Sharpe ratios of about −0.5 for ATM
straddles. It is well known that implied volatility exceeds realized volatility by
some considerable amount (e.g., Jackwerth and Rubinstein (1996), Bollerslev,
Tauchen, and Zhou (2009), among others), which is interpreted as a volatility
risk premium.

Table II presents summary statistics on returns to VIX options positions us-
ing data from January 2006 to June 2020—a period covering both the 2008 fi-
nancial crisis and the Covid-19 crash in March 2020. For comparison, Table III
reports corresponding statistics from the SPX options markets over the same
period. Both tables report buy-and-hold returns. The results suggest that VIX
calls have negative average rates of return over the sample period. Moreover,
the bootstrapped confidence intervals indicate that the returns are statistically
significantly negative at a one-sided 5% sized test. This is similar to SPX put
options, which also lose between 69% and 29% on average. Like VIX options,
OTM SPX returns are statistically significantly negative at the 5% level using
a one-sided test.

Long VIX put positions give negative exposure to VIX. In accordance with
the negative risk premium associated with VIX futures positions, one might
expect VIX puts to earn positive premiums, and they do: Table II shows that
short-maturity puts on average have statistically significantly positive rates
of return. Longer-maturity VIX puts yield close to zero average returns. The
fact that VIX puts yield positive short-term and zero long-term average re-
turns is consistent with extant evidence on average rates of return on variance
swaps and VIX futures. Our findings are consistent with those of Eraker and
Wu (2017) and Dew-Becker et al. (2017), who document a sharply downward-
sloping term structure of risk premia for variance claims.

Figure 1 suggests that the pre-Covid-19 prices of VIX options were cheaper
than those of SPX options. Below we seek to add to this anecdotal evidence by
presenting a more detailed analysis of returns to the respective option classes
over a longer period that includes the 2008 financial crisis as well as the Covid-
19 crisis.

Figure 4 presents visual evidence on the performance of option invest-
ments in VIX calls and OTM SPX puts. These are not values of self-financing
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Figure 4. Marked-to-market value of 30- and 180-day VIX call options (top) and SPX put
options (bottom). (Color figure can be viewed at wileyonlinelibrary.com)
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portfolios, as we would typically look at for bond and stock investments. The
reason we cannot compute the value of self-financing portfolios is that the ma-
jority of OTM options expire worthless. The natural way to overcome this is
for portfolio managers to keep only a small fraction of ones’ capital allocated
to short or long positions. However, this approach implies that average returns
depend on the arbitrary amount of starting capital.

To overcome this challenge, Figure 4 presents portfolio values of investments
that are constantly replenished with cash. Specifically, we assume that one
invests a single dollar each month in a target security based on moneyness and
maturity. The graphs show the cumulative profit and loss on these investments
including minute-to-minute marking-to-market. The figures show periods for
which there is a constant one-dollar per month loss on average. This is true, for
example, for the 2012 to mid-2015 period for all the SPX puts and for six-month
maturity VIX calls. This happens as the options have a near-constant time
decay plus some random, smaller moves due to fluctuations in market prices.

The graphs also show that the main driver of returns to these constant cash
investments is the payoffs of the options. OTM options pay off during periods
of financial turmoil. The fall of the 2008 financial crisis led to large payoffs
for both VIX calls and SPX puts. Figure 4 shows that for both SPX and VIX
options, March 2020 produced the largest payoffs seen in the sample. Short-
term VIX options jumped so much that they temporarily erased the entire
cumulative loss of the previous 14 years. Confirming evidence from Figure 1,
the payoffs to VIX options holders were larger than for SPX.

Other periods, such as the European currency crisis periods in 2010 and
2011 also produce positive option payoffs but to varying degrees depending
on the underlying, the strike, and maturities. There are also other noticeable
features. For example, on August 24th, 2015, the Dow opened up 1,000 points
lower in response to a substantial decline in the Chinese market. This led
to an extreme spike in short-term OTM SPX put options, momentarily wip-
ing out losses of the previous 11 years to buyers of these contracts. Prices
quickly reverted and the episode had no impact on long-term performance.
As seen in Figure 4, the impact on VIX options was much less dramatic. On
February 5, 2018, the SPX fell 4.6%, while the VIX index more than doubled.
The event, dubbed “volpocalypse” by some VIX market participants, forced the
termination or restructuring of several VIX futures-linked exchange-traded-
funds (ETF).

B.2. Principal Component Analysis

To further understand the connection between returns to SPX and VIX
options, we perform principal component analysis (PCA) of the returns asso-
ciated with the various maturity and moneyness categories. PCA and latent
factor analysis are standard tools to uncover factor structures in returns.
In their classic study, Roll and Ross (1982) apply factor analysis for equity
returns, Christoffersen, Fournier, and Jacobs (2017) and Horenstein, Vasquez,
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Figure 5. PCA factor loadings. The plots show the PCA factor loadings for the four first factors
in the data as seen from two different angles. (Color figure can be viewed at wileyonlinelibrary.com)

and Xiao (2019) analyze factor structures in equity options, and Johnson
(2017) performs PCA on the VIX term structure.4

Figure 5 shows factor loadings associated with the first four principal com-
ponents. The first factor (dark blue) can be interpreted as a level factor. It loads
highly on short-term SPX options and less on VIX options. However, this fac-
tor accounts for 85.5% of the variation in the data and, as such, is important
for VIX options as well. The second (light blue) is a short-term SPX skew fac-
tor. It loads positively on short-term deep OTM SPX options and negatively on
short-term near ATM options. This skew factor accounts for about 5.5% of the
variation. The third factor (green) can be interpreted as an extreme tail factor
as it loads positively on far OTM SPX options and negatively on everything
else. It accounts for 3.8% of the variation. The fourth factor, which accounts for
2.5% of variation, is essentially a VIX factor, as it loads on VIX as well as far
OTM SPX short-term options.

Figure 5 reveals that VIX and SPX options contain some common and some
idiosyncratic components. In our equilibrium model, first, shocks to consump-
tion variance and variance-of-variance are common to VIX and SPX, whereas
cash-flow shocks are specific to SPX. Second, VIX and SPX endogenously ob-
tain different exposures to these shocks. Both facts allow for an imperfect
correlation between payoffs to SPX and VIX options. Our model generates
a common factor structure, where the factor coefficients depend on “deep
parameters” (e.g., persistence in priced risk factors) along with preference
parameters.

4 Other factor structure analyses for individual stock options include Bakshi, Kapadia, and
Madan (2003), Bakshi and Kapadia (2003), Serban, Lehoczky, and Seppi (2008), Duan and Wei
(2009), Vasquez (2017), and Brooks, Chance, and Shafaati (2018), among others. Different from
these studies, we apply PCA on different types of options—SPX and VIX options.
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C. VIX Options as Hedges for SPX Options

To understand exactly the relationship between SPX and VIX options, con-
sider what it would take to synthetically recreate an SPX option by dynami-
cally trading in the underlying in addition to other instruments. From Black
and Scholes’ seminal 1973 paper, we know that we can replicate the option
payoff by holding delta number of shares of the SPX index, provided that the
index follows a geometric Brownian motion.5 If we generalize the distribu-
tional assumptions of Black and Scholes to include stochastic volatility, we
will have to include an additional hedging instrument to hedge the SPX op-
tion. For example, under Heston (1993)’s model, it can be shown that the in-
troduction of VIX futures will complete the market such that a dynamically
adjusted portfolio of SPX futures and VIX futures will replicate SPX options.
Likewise, model economies with additional risk factors need more instruments
to complete the market.

Let Pt = P(t,Xt ) denote the price of an SPX put option where Xt is an N-
dimensional state variable. Assuming that Xt is a continuous time, continuous
path process, standard arguments imply that Ito’s formula describes the dy-
namics of P,

dPt = ∂P
∂t

dt + ∂P
∂X

′
dXt, (3)

where the partial derivatives ∂P
∂t and ∂P

∂X are functions of t and Xt and the op-
tion’s strike and maturity (arguments suppressed). We later make explicit as-
sumptions about the evolution of Xt and preferences to derive an explicit for-
mula for Pt . Absent any such assumptions, we can compute hedge coefficients
through a regression

dPt = αt + β ′
tdXt + dεt, (4)

where αt and βt are regression coefficients and dεt an error term. The regres-
sion coefficients βt are time-varying as they approximate ∂P

∂X , which depends
on (t,Xt ), provided that the data used to run the regression are sampled over
a small time interval.

Figure 6 shows results from the regression

�Pi
t = αi,t + βSPY

i,t �SPYt + βVIX futures
i,t �Ft + β

VIX option
i,t �Ct + errori,t, (5)

where �Pt,i are changes in SPX put options, �SPYt is the change in the SPDR
S&P 500 ETF, �Ft is the change in the front-month VIX futures contract, and
�Ct is the change in the value of a VIX call option index.6 The regressions

5 As a matter of practical implementation, a hedger would have to trade the SPX futures or an
SPX-linked ETF such as the SPY.

6 The VIX option index is an equally weighted index of call midpoint prices that include options
that are at least 10% out of the money. It implicitly puts more (less) weight on lower (higher)
strikes. The averaging is applied to mitigate stale quotes.
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Figure 6. Hedge regressions. The figure shows βvix option
t computed through the regression

�Pi
t = αi,t + βSPY

i,t �SPYt + βVIX futures
i,t �Ft + β

VIX option
i,t �Ct + errori,t , where Pt is the SPX put op-

tion, SPYt is the S&P 500 index ETF, Ft is front-month VIX futures, and Ct is the OTM VIX
call option. The regression is run intraday using 10-minute price changes from overlapping data
sampled at the one-minute frequency. The figure shows the average estimated slope coefficient
β

VIX option
t = 1

Nt

∑Nt
i=1 β

VIX option
i,t , where i indexes SPX put options that are at least 10% out of the

money and have less than 40 days to maturity and Nt is the number of SPX options that satisfy
these criteria on day t. (Color figure can be viewed at wileyonlinelibrary.com)

are run day-by-day using 10-minute price changes from overlapping data sam-
pled at the one-minute interval. The typical number of observations is 405
one-minute intervals within a day. To average over sampling noise, the fig-
ure shows the average slope coefficient βVIX option

t = 1
Nt

∑Nt
i=1 β

VIX option
i,t for SPX

puts with less than 40 days to maturity.
The figure shows the results for βVIX option

t , allowing us to study the ability of
OTM VIX calls to hedge OTM SPX puts. As can be seen, the estimated slope co-
efficients are close to zero during periods of market calm, and are positive dur-
ing periods of high volatility. The results suggest that during high-volatility
periods, such as the Great Recession and the COVID-19 crisis periods, VIX
options serve as useful hedges for SPX options. Our two-factor model, which
replicates the pattern seen in Figure 6, can be used to shine light on the non-
linear relationship between changes in OTM SPX puts and OTM VIX calls.

III. A Structural Approach to VIX Option Pricing

This section presents our model framework for pricing VIX options,
which is a special case of the general model developed in Section I of the
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The Price of Higher-Order Catastrophe Insurance 3307

Internet Appendix. We first specify a specific economic environment and de-
scribe the equilibrium VIX. We then perform a generalized Fourier payoff
transform analysis to derive a pricing formula for VIX options as a single in-
tegral. Section III of the Internet Appendix derives pricing formulas for VIX
futures and SPX options also as single integrals.

A. The Model

Consider an endowment economy with a representative agent who has
Duffie and Epstein (1992) recursive preferences described by

Vt = Et

∫ ∞

t
f (Cs,Vs)ds, (6)

f (C,V ) = β(1 − γ )V
(

lnC − 1
1 − γ

ln((1 − γ )V )
)
, (7)

where Vt represents the continuation value. The parameter β is the rate of
time preference, γ is the relative risk aversion, and the IES is implicitly set
at one. Consumption, dividends, and ultimately, asset prices and returns are
influenced by a key variable, namely, the conditional volatility of consumption
growth, σt , which itself is exposed to both diffusion and jump risks. Specifically,
we assume the following affine structure for the evolutions of state variables
Xt ≡ [lnCt, σ

2
t , λt]′:

d lnCt = (μ− σ 2
t

2
)dt + σtdBC

t , (8)

dσ 2
t = κV (θV − σ 2

t )dt + σVσtdBV
t + ξV dNt, (9)

dλt = κλ(θλ − λt )dt + σλ
√
λtdBλ

t , (10)

where lnCt is the log consumption supply, and σ 2
t is the instantaneous condi-

tional variance of consumption growth. BC
t ,B

V
t , and Bλ

t are Brownian motions.
ξV dNt is a jump term where Nt is a compounded Poisson process with instanta-
neous arrival intensity λt that itself follows a mean-reverting diffusion process,
and ξV is a time-invariantly distributed random variable that represents the
jump size with a moment generating function 
(·). Motivated by Eraker and
Shaliastovich (2008), Park (2016), and our VIX option data, we assume that
ξV > 0, implying that upward jumps in volatility are emphasized. We assume
that all three standard Brownian motions BC

t , BV
t , and Bλ

t and the jump size
ξV are mutually independent. Our endowment dynamics abstract from impor-
tant mechanisms in leading asset pricing models such as long-run productiv-
ity risks and rare disasters that occur to consumption. Instead, we focus on
jumps to consumption growth volatility, which is natural given our VIX and
VIX derivatives pricing concentration. In short, we pursue the simplest frame-
work that captures as many aspects of VIX derivatives data as possible.

 15406261, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jofi.13182 by Peking U

niversity H
ealth, W

iley O
nline L

ibrary on [22/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3308 The Journal of Finance®

As Cox, Ingersoll Jr, and Ross (1985) discuss, the solution to (10) has a sta-
tionary distribution, provided that κλ > 0 and θλ > 0. This stationary distribu-
tion is Gamma with shape parameter 2κλθλ/σ 2

λ and scale parameter σ 2
λ /(2κ

λ).
If 2κλθλ > σ 2

λ , then the Feller (1951) condition is satisfied, implying a finite
density at zero. The stationary distribution of λt is highly right-skewed, aris-
ing from the square-root term multiplying the Brownian shock in (10). The
square-root term implies that high realizations of λt make the process more
volatile, and thus, further high realizations more likely than they would be
under a standard AR(1) process. The model therefore implies that there are
times when jumps to volatility can occur with high probability, but such times
are themselves rare. For similar reasons, there is a σt term multiplying the
Brownian shock in (9), which helps both prevent σ 2

t from falling below zero
and correctly replicate the right-skewness in its distribution.

B. State-Price Density

Section III of the Internet Appendix shows that the equilibrium value func-
tion of the representative agent is given by7

J(Wt,Xt ) = W1−γ
t

1 − γ
exp

(
a + b2σ

2
t + b3λt

)
, (11)

where

a = 1
β

(
(1 − γ )(μ+ β lnβ ) + b2κ

V θV + b3κ
λθλ

)
, (12)

b2 = (κV + β )
σ 2

V

−
√

(κV + β )2 − σ 2
Vγ (γ − 1)

σ 2
V

, (13)

b3 = κλ + β

σ 2
λ

−
√

(κλ + β )2 − 2σ 2
λ (
(b2) − 1)

σ 2
λ

. (14)

Assume that parameter values are such that b2 and b3 are both well defined.
Note then that (13) implies b2 > 0 if we assume γ > 1. Equation (14) then im-
plies b3 > 0, since by definition 
(b2) − 1 = E[eb2ξV − 1] > 0 due to the positiv-
ities of both b2 and ξV . Hence, from (11), the value function (marginal utility)
is decreasing (increasing) in both σ 2

t and λt . This means an increase in con-
sumption growth volatility reduces utility (increases marginal utility) for the
representative agent. Similarly, an increase in the probability of a volatility
jump also reduces utility (increases marginal utility) for the representative

7 Because the specific model is a special case of our general model, the IES=1 implication that
the wealth-consumption ratio is constant, Wt/Ct = 1/β, is inherited, which contrasts with the data
slightly. This is a sacrifice for precise framework tractability. Importantly for our purposes, the
price-dividend ratio is not constant, as we show below.
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The Price of Higher-Order Catastrophe Insurance 3309

agent. Both results are intuitive. Under recursive preferences, marginal util-
ity depends on consumption as well as the value function, which is explicitly
affected by σ 2

t and λt . The agent thus requires compensation for bearing risks
in both σ 2

t and λt .
Section III of the Internet Appendix shows that the instantaneous risk-free

rate is given by

rt = β + μ− γ σ 2
t , (15)

where β represents the role of discounting, μ intertemporal smoothing, and
γ σ 2

t precautionary savings.8 The Internet Appendix also shows that the state-
price density is given by

dπt

πt−
= −rtdt −�′

tdBt +
(
eb2ξV − 1

)
dNt − λtE[eb2ξV − 1]dt, (16)

�t = �(Xt )
′
λ, (17)

�(Xt ) = Diag
(
σt, σVσt, σλ

√
λt

)
, (18)

λ = (γ ,−b2,−b3)′, (19)

where Diag represents a diagonal matrix. The vector λ determines the market
prices of risks in the different components of Xt such that innovations to Xt,i
are positively (negatively, not) priced if and only if λi > 0 (< 0,= 0). Therefore,
in the present model, log consumption lnCt has a positive market price of risk,
while consumption growth volatility σ 2

t and volatility jump intensity λt each
warrants a negative market price of risk. The fact that all three state variables
are priced is in sharp contrast with the CRRA utility model, in which only
innovations to consumption are priced and VIX derivatives have zero premia
in equilibrium.

Section III of the Internet Appendix shows that the evolution of the state
variables under the risk-neutral measure Q induced by the state-price density
is given by

d lnCt =
(
μ− (

1
2

+ γ )σ 2
t

)
dt + σtdBC,Q

t , (20)

dσ 2
t = κV,Q(θV,Q − σ 2

t )dt + σVσtdBV,Q
t + ξ

Q
V · dNQ

t , (21)

dλt = κλ,Q(θλ,Q − λt )dt + σλ
√
λtdBλ,Q

t , (22)

8 Note that rt can become negative when σ 2
t is sufficiently high. A standard arbitrage when

the real risk-free rate is negative involves borrowing consumption goods at negative rates, stor-
ing them until maturity, and then repaying a fraction back. This strategy does not work since no
physical storage technology is available in the economy. For the same reason, negative real inter-
est rates are also possible in models such as Bansal and Yaron (2004) (not because of log-linear
approximation errors) and Wachter (2013).
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where

κV,Q = κV − b2σ
2
V ; κλ,Q = κλ − b3σ

2
λ , (23)

θV,Q = κV

κV − b2σ
2
V

θV ; θλ,Q = κλ

κλ − b3σ
2
λ

θλ. (24)

Equation (20) shows that the drift of consumption growth is adjusted down-
ward by γ σ 2

t under the Q measure. Equations (21) through (24) show that,
for both σ 2

t and λt , mean reversion becomes slower and the long-run mean
becomes higher under the Q measure. Moreover, the Internet Appendix shows
that the jump arrival intensity is magnified under the Q measure by a percent-
age 
(b2) − 1: λt under P versus 
(b2)λt under Q. As analyzed in the general
model, the jump size may be adjusted upward or downward under the Q mea-
sure, with a moment generating function 
(u) under P versus 
(u + b2)/
(b2)
under Q. In the special case in which ξV is exponentially distributed, the jump
size is adjusted upward in the sense that its mean is increased under Q. Specif-
ically, let ξV ∼ exp(μξ ) under P; then ξQ

V ∼ exp( μξ
1−μξb2

) under Q.
By now, we have drawn on all of the key results from our general model,

which help characterize the equilibrium value function, risk-free rate, pricing
kernel, and risk-neutral dynamics. We next apply these results to price divi-
dend strips, SPX, VIX, SPX options, and VIX futures and options.

C. Equity Price

Let us first price SPX. The continuous-time literature (Abel (1999), Camp-
bell (2003), Wachter (2013)) specifies the aggregate dividend process, Dt , as
leveraged consumption: Dt = Cφ

t , so that Dt does not introduce a new state
variable. However, this assumption has two undesirable consequences: first, φ
shapes both the exposure of dividend risk to consumption risk and the aver-
age growth rate of dividend relative to consumption; second, consumption and
dividend are perfectly correlated. To address these shortcomings, we follow the
long-run risk literature (Bansal and Yaron (2004)) that models dividend and
consumption separately,

d ln Dt = φd lnCt + μDdt + σDdBD
t , (25)

where φ captures stock market leverage, μD allows a flexible dividend growth
rate, and BD

t is a standard Brownian motion independent of any other
random process in the model, thus representing the idiosyncratic risk in div-
idend growth.9 As a result, the state variable ln Dt remains redundant: dBD

t

9 The long-run risk literature (Bansal and Yaron (2004)) typically assumes d ln Dt = μddt +
φσtdBC

t + σDdBD
t , which is equivalent to our specification (25) with properly chosen μd, up to
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The Price of Higher-Order Catastrophe Insurance 3311

does not enter the pricing kernel, and ln Dt does not enter the value function,
which one can confirm by including a fourth state variable ln Dt in Xt , solving
the model all over again, and verifying that b4 = 0. We note that the parameter
σD has dual roles: besides governing the correlation between consumption and
dividend, σD also affects dividend growth volatility, SPX return volatility, and
eventually, the level and composition of VIX, thus affecting VIX derivatives
premia. Our choice of σD in calibration takes care of both aspects.

Let P(Xt,Dt ) denote the price of the claim to all future aggregate dividends
(the dividend claim). Then no-arbitrage implies that P(Xt,Dt ) is obtained as

P(Xt,Dt ) =
∫ ∞

0
EQ

t

(
e− ∫ t+τ

t ruduDt+τ
)
dτ

= eσDBD
t +μDt

∫ ∞

0
e

(
σ2
D
2 +μD

)
τ
EQ

t

(
e− ∫ t+τ

t rudueφ lnCt+τ
)
dτ,

(26)

where the risk-neutral expectation in the first line represents the price of a div-
idend strip paid off τ periods ahead. To compute the risk-neutral expectation
in the second line as well as other no-arbitrage asset prices such as riskless
bond prices and derivatives prices, we follow Duffie, Pan, and Singleton (2000)
and define an important function, the discounted characteristic function of Xt
under the risk-neutral measure,



Q
X (u,Xt, τ ) ≡ EQ

t

(
e− ∫ t+τ

t rudueu′Xt+τ
)
. (27)

Section III of the Internet Appendix shows that 
Q
X is exponential affine in Xt

for arbitrary u ∈ C3, and proves the following proposition.

PROPOSITION 1: The equilibrium price of the dividend claim (i.e., SPX) is

P(Xt,Dt ) = DtG(σ 2
t , λt )

= Dt

∫ ∞

0
e

(
σ2
D
2 +μD

)
τ+α(τ )+β2(τ )σ 2

t +β3(τ )λt
dτ,

(28)

where (α(τ ), β2(τ ), β3(τ )) solve ordinary differential equations (ODEs) in Sec-
tion III of the Internet Appendix, and G(σ 2

t , λt ) is the price-dividend ratio
function.

D. Equity Premium

We next discuss the equity premium. No-arbitrage implies that the instan-
taneous equity premium conditional on no jumps occurring in our economy, as

a Jensen’s term that is quantitatively unimportant. We write dividend in the form of (25) for
convenience of applying the discounted characteristic function as defined in (27), a very use-
ful tool in continuous-time models, which requires the dividend to be log-linear in consumption:
Dt = Cφt eμDteσDBD

t .
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shown in Section III of the Internet Appendix, is given by

μP,t + Dt−

Pt−
− rt = γφσ 2

t − b2
G1

G
σ 2

Vσ
2
t − b3

G2

G
σ 2
λ λt + λtE

[
eb2ξV

(
1 − G(σ 2

t + ξV , λt )

G(σ 2
t , λt )

)]

= σ ′
P,t�t + λtE

[
eb2ξV

(
1 − G(σ 2

t + ξV , λt )

G(σ 2
t , λt )

)]

(29)
with

σP,t =
[
φσt,

G1

G
σVσt,

G2

G
σλ
√
λt

]′
, (30)

where G1 and G2, respectively, denotes the partial derivative of G(·, ·) with
respect to σ 2

t and λt . Four components arise in order. The first term, γφσ 2
t ,

represents a standard constant relative risk aversion (CRRA) risk premium
that arises from the compensation for the diffusion risk in consumption, dBC

t .
The second component, −b2

G1
G σ

2
Vσ

2
t , captures the compensation for the diffu-

sion risk in volatility, dBV
t . The Internet Appendix shows that β2(τ ) is negative

for all τ as long as 1 < φ < 2γ , which we assume here and in our calibration,
which immediately implies G1 < 0 (i.e., the price-dividend ratio decreases in
σ 2

t ). Thus, the second component takes a positive value. The third component,
−b3

G2
G σ

2
λ λt , which has a similar interpretation as the second one, stands for

compensation for the diffusion risk in volatility jump intensity, dBλ
t . The In-

ternet Appendix shows that given β2(τ ) is negative, β3(τ ) is also negative for
all τ , which implies G2 < 0 (i.e., the price-dividend ratio decreases in λt), and
thus, the third component also takes a positive value. In contrast, the last
term captures compensation for the jump risk in volatility, ξV dNt . It is positive
since b2 > 0, ξV > 0, and G1 < 0. Intuitively, when volatility jumps upward,
two things happen simultaneously: first, marginal utility jumps upward by
a percentage equal to eb2ξV , and second, the stock price jumps downward by
a percentage equal to 1 − G(σ 2

t +ξV ,λt )
G(σ 2

t ,λt ) . Investors therefore demand a jump risk
premium for holding equity.

The instantaneous equity premium is given by (29) plus the expected per-
centage change in the equity price if a jump to volatility occurs. That is, the
population equity premium in the economy is given by μP,t + Dt−

Pt−
− rt plus a

negative term: λtE[ G(σ 2
t +ξV ,λt )

G(σ 2
t ,λt ) − 1]. Finally, we can write the analytical expres-

sion for the population equity premium as

re
t − rt = σ ′

P,t�t + λtE
[(

eb2ξV − 1
)(

1 − G(σ 2
t + ξV , λt )

G(σ 2
t , λt )

)]
. (31)

Note that the last term in (31) remains positive, meaning that the positive com-
pensation for jump risks dominates the direct negative expected effect of jumps
on equity returns. The above analysis establishes the following proposition.
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PROPOSITION 2: In equilibrium, innovations to σ 2
t and λt are both negatively

priced. The price-dividend ratio G(σ 2
t , λt ) is strictly decreasing in both σ 2

t and
λt . Therefore, all sources of risks (diffusion and jump risks) in σ 2

t and λt help
contribute to a positive equity premium.

E. VIX

Having obtained equilibrium SPX, we next define VIX. Given our model pa-
rameters have an annual interpretation, VIX, as a measure of risk-neutral
30-day forward-looking market volatility, can be expressed as10

VIX (Xt ) = StdQ
t

[
ln Pt+1/12

]
. (32)

To express VIX as a function explicitly in state variables, we follow Eraker
and Wu (2017) and use the property of the conditional cumulant generating
function for ln Pt+1/12, which requires expressing ln Pt+1/12 as an affine function
in state variables. Define the log price-dividend ratio as g(σ 2

t , λt ) = ln G(σ 2
t , λt ).

It follows from (25), (28), and a highly accurate log-linear approximation of the
price-dividend ratio G around steady states that11

ln Pt = g(σ 2
t , λt ) + ln Dt

	 (
g∗ − g∗

1σ
2∗ − g∗

2λ
∗)+ g∗

1σ
2
t + g∗

2λt + φ lnCt + μDt + σDBD
t ,

(33)

where g1 and g2, respectively, denotes the partial derivative of g(·, ·) with re-
spect to σ 2

t and λt , and letters with asterisks denote relevant functions or vari-
ables evaluated at steady states. It follows that

VIX 2(Xt ) = VarQ
t

[
g∗

1σ
2
t+1/12 + g∗

2λt+1/12 + φ lnCt+1/12
]+ 1

12
σ 2

D, (34)

where to compute the conditional variance, we rely on the property of cumulant
generating functions. Section III of the Internet Appendix shows that by doing

10 Following the convention in the literature, we define VIX 2 as the risk-neutral variance
of 30-day log market return. The precise definition of VIX 2 is VIX 2

t = −2(EQ
t [ln Pt+1/12] −

ln EQ
t [Pt+1/12]) as shown, for instance, in Martin (2011), Result 5. In Section IV of the Internet

Appendix, we show that our results change quantitatively negligibly under the precise definition
because the third- and higher-order conditional moments of log equity return are relatively unim-
portant compared with the second-order conditional moment. We thank an anonymous referee for
this point.

11 Our such log-linearization is highly accurate for two reasons. First, as in Seo and Wachter
(2019), our log-linearization of the price-dividend ratio is used only after the price-dividend ratio
is exactly solved out. This is different from the Campbell-Shiller log-linear approximation used
before solving the model in many asset pricing papers. Second, as argued in Pohl, Schmedders,
and Wilms (2018) and Lorenz, Schmedders, and Schumacher (2020), a necessary condition for the
log-linearization technique generating a nontrivial numerical error is that factors that impact the
price-dividend ratio are extremely persistent. This is not the case in our calibration. As we have
verified, Pt is actually indistinguishably different from exponential affine, and numerical errors in
VIX calculations (due to log-linearization of Pt ) across various states never exceed 1%.
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so, we can write VIX-squared as a function affine in σ 2
t and λt ,

VIX 2(σ 2
t , λt ) = a1/12 + c1/12σ

2
t + d1/12λt, (35)

where a1/12, c1/12, and d1/12 are three positive constants that in equilibrium
depend on investors’ preference parameters. For example, all of them are in-
creasing in risk aversion γ because VIX, as risk-neutral variance, implicitly
incorporates market investors’ attitudes toward risks. The more market in-
vestors are risk-averse, the higher the VIX index. In addition, a1/12, c1/12, and
d1/12 also depend on endowment dynamics parameters. For example, the more
persistent σ 2

t is, the greater its impact on SPX volatility and thus VIX, that is,
the higher c1/12 is. However, we emphasize that the dividend-specific risk pa-
rameter σD only impacts the constant component of VIX, a1/12. Since the risk
is orthogonal to consumption risks and not priced, it affects VIX in a fashion
independent of investors’ attitudes towards risks.12 It follows that in equilib-
rium, the VIX index has a square-root affine structure:

VIX (σ 2
t , λt ) =

√
a1/12 + c1/12σ

2
t + d1/12λt . (36)

Several observations are worth noting. First, in the reduced-form literature,
VIX typically takes an affine or exponential affine structure (Mencía and
Sentana (2013), Park (2016)) that delivers convenience for VIX option pric-
ing. In our model, however, VIX has a square-root affine structure, which we
handle with a novel generalized Fourier transform in order to price VIX op-
tions. Importantly, as we will explain, the square-root structure is essential for
replicating the concave VIX-option-implied volatility curves seen in the data.
Second, as VIX loads positively on state variables σ 2

t and λt , both of which
command a negative market price of risk, so does VIX. This implies that, in
principle, an asset with positive (negative) VIX exposure should earn a nega-
tive (positive) premium with no ambiguity, as in the data. Examples include
VIX futures and call options (put options), as we verify quantitatively below.

F. VIX Options

Our key focus is a (European) VIX call option that renders its holder the
right, but not the obligation, to obtain the difference between the VIX index
at an expiration date t + τ and a prespecified strike K.13 No-arbitrage implies

12 Section III of the Internet Appendix shows that the differential equations pinning down c1/12
and d1/12 depend on almost all model parameters except σD. If they depended on σD, then the
impact of σD on c1/12 and d1/12 would be γ -dependent.

13 Note that the standard convergence of the futures price to the underlying price as the time
to maturity approaches zero holds regardless of whether the underlying is tradable. As a related
issue, just as in reality, the VIX futures-spot parity does not hold in our model. This is because the
VIX index is not tradable. That VIX were tradable is equivalent to the existence of an investment

technology allowing the agent to transfer
√

a1/12 + c1/12σ
2
t + d1/12λt units of consumption goods
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The Price of Higher-Order Catastrophe Insurance 3315

that the price of a VIX call option is given by

CVIX (Xt, τ,K ) = EQ
t

[
e− ∫ t+τ

t rudu
(

VIXt+τ − K
)+]

, (37)

where it follows from (36) that

VIXt+τ = VIX (σ 2
t+τ , λt+τ ) =

√
a1/12 + c1/12σ

2
t+τ + d1/12λt+τ . (38)

The challenge in computing the expectation in (37) is to properly transform
the nonstandard option payoff function (

√
x − K )+, to which end we apply a

novel generalized Fourier transform analysis. Section III of the Internet Ap-
pendix shows that by doing so, we can finally write the VIX call price as

CVIX (Xt, τ,K ) = 1
4
√
π

∫ izi+∞

izi−∞
e−iza1/12


Q
X

(−iz(0, c1/12,d1/12)′,Xt, τ
)

× Erc f
(
K

√−iz
)

(−iz)
3
2

dz,

(39)

where the integration is performed on any a strip parallel to the real axis in
the complex z plane for which zi ≡ Im(z) > 0, 
Q

X represents the complex-valued
discounted characteristic function defined in (27), and Ercf (·) is the complex-
valued complementary error function with an expression given in the Internet
Appendix.

A similar generalized Fourier transform analysis on the put’s payoff function
(K − √

x)+ gives the VIX put price as

PVIX (Xt, τ,K ) = − 1
4
√
π

∫ izi+∞

izi−∞
e−iza1/12


Q
X

(−iz(0, c1/12,d1/12)′,Xt, τ
)

× 1 − Erc f (K
√−iz)

(−iz)3/2 dz,

(40)

where the integration is performed on any a strip parallel to the real axis in
the complex z plane for which zi ≡ Im(z) < 0.14 As the payoff structure we are

at t into
√

a1/12 + c1/12σ
2
t+τ + d1/12λt+τ units of consumption goods at t + τ (for any τ ). However,

any such intertemporal consumption transfer is ruled out in the model. A τ -maturity VIX future

at t is in essence a random consumption strip that pays off
√

a1/12 + c1/12σ
2
t+τ + d1/12λt+τ units of

consumption goods at t + τ . The futures price is the equilibrium (time t + τ ) price of such a strip.
Relatedly, we only consider a VIX futures option and back out its implied volatility using the Black
(1976) formula. On the other hand, we back out implied volatility for SPX options using the Black
and Scholes (1973) formula, since SPX (the dividend claim) is a tradable asset.

14 In Section IV, we use both the Riemann rule and the quadrature rule to approximate the
integrals. The two methods generate the same result. We also compare the price obtained via
integral with that via risk-neutral Monte Carlo simulation. We find that the difference is negligible
as long as the VIX option is not “too far OTM,” which applies to all of our reported results.
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looking at is not common, we prove the existence of relevant Fourier trans-
forms in the Internet Appendix. An important contribution of our paper to the
option pricing literature is thus to fully characterize the working of a general-
ized Fourier transform argument to price a European call and put option with a
square-root affine underlying payoff structure, which no previous papers have
done to our best knowledge.

IV. Quantitative Analysis

In the following, we calibrate parameters for our model with the target to-
ward replicating salient features of consumption, dividends, equity, VIX, and
VIX derivatives data.

A. Calibration

Table IV displays our choices of model parameters. To facilitate compari-
son with recent continuous-time asset pricing models, in our model, time is
measured in years, and parameter values should be interpreted accordingly. A
rate of time preference β equal to 1% per annum and an expected consump-
tion growth μ equal to 3% per annum together help give rise to a low average
real yield on the one-year Treasury Bill of 0.18%, roughly consistent with that
documented in Bansal and Yaron (2004), 0.86%. We set μ relatively high to
counter the negative effect of a relatively large risk aversion or a relatively
high mean volatility on risk-free rate, since at least one of the latter is needed
to produce premia on VIX derivatives as large as those seen in the data. But
this results in an excessively high dividend growth through the stock market
leverage parameter φ. To counter this side effect, we set the adjustment term
μD = −2%. These parameters lead to a dividend growth of 5.84% per annum,
close to the data.

We set the value of θV , the average annualized consumption growth variance
without jumps, to 0.0004, which corresponds to a volatility of 2% per annum,
consistent with that used in Wachter (2013). A reasonable range of values for
the U.S. consumption growth volatility that most previous research agrees on
is 1% to 3%. For example, Bansal and Yaron (2004) document a volatility of
2.93%, while Wachter (2013) documents a volatility of 1.34%.

Consistent with the literature, stock market leverage φ is calibrated at 2.7, a
value between that in Bansal and Yaron (2004), 3, and that in Wachter (2013),
2.6. This value of leverage works well overall in terms of explaining various
market data. Implicitly, the IES, the value of which constitutes a source of
debate, is set to one for tractability. A number of studies conclude that a rea-
sonable value for this parameter should be somehow close to one (e.g., Vissing-
Jørgensen (2002), Hansen, Heaton, and Li (2008), Wachter (2013), Thimme
(2017)).

The parameter θλ has the interpretation as the average probability of a jump
in consumption volatility per annum. The parameter is hard to identify from
monthly consumption data alone. However, studies using equity market data,
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The Price of Higher-Order Catastrophe Insurance 3317

Table IV
Parameters for the VIX Model

The table reports parameter values for the VIX model in Section III. The processes for log
consumption, consumption growth volatility, volatility jump arrival intensity, and log dividend
are, respectively, given by

d lnCt =
(
μ− σ 2

t

2

)
dt + σtdBC

t ,

dσ 2
t = κV (θV − σ 2

t )dt + σVσtdBV
t + ξV dNt ,

dλt = κλ(θλ − λt )dt + σλ
√
λtdBλt ,

d ln Dt = φd lnCt + μDdt + σDdBD
t ,

where Nt is a Poisson process with instantaneous arrival intensity λt , and the jump size ξV is
exponentially distributed with mean μξ . The representative agent has recursive utility given by

Vt = Et
∫∞

t f (Cs,Vs )ds,

f (C,V ) = β(1 − γ )V (lnC − 1
1−γ ln((1 − γ )V )).

Parameters values are interpreted in annual terms.

Rate of time preference β 0.01
Relative risk aversion γ 14
Average growth in consumption μ 0.03
Mean reversion of volatility process κV 2.5
Average volatility-squared without jumps θV 0.0004
Diffusion scale parameter of volatility process σV 0.16
Average volatility jump size μξ 0.005
Mean reversion of jump arrival intensity process κλ 12
Average intensity of a jump in volatility θλ 0.5
Diffusion scale parameter of jump arrival intensity process σλ 2.6
Stock market leverage φ 2.7
Adjustment in dividend growth drift μD −0.02
Idiosyncratic risk in dividend growth σD 0.1

such as Eraker, Johannes, and Polson (2003), suggest that jumps in equity
market return volatility occur 1.5 times per year on average. Starting from the
mean level of volatility, an average-sized jump in volatility increases volatility
from 15% to 24%. Given that jumps in consumption volatility translate one-to-
one into jumps in equity price and return in our model, we are a little more
conservative in setting the average jump probability to be once every other
year (θλ = 0.5), with each jump having a larger impact on equity volatility.

We choose μξ such that in equilibrium, an average-sized jump in volatility
increases steady-state VIX from 20.9 to 32.6, which is consistent with the aver-
age jump size in VIX, 11.4, computed from historical VIX data from CBOE over
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the period 1990 to 2020.15 The unconditionally average consumption growth
volatility is equal to the square root of σ̄ 2

t = θV + μξ θ
λ

κV . With θV , μξ , and θλ

fixed, we then set κV at 2.5, implying a monthly autocorrelation of 0.8 in VIX,
which compares to 0.84 in the data. Our chosen consumption volatility parame-
ters imply an average consumption volatility of 3.08%, which is slightly higher
than 2.93% documented in Bansal and Yaron (2004) and higher than 1.34% in
Wachter (2013).

To calibrate the other model parameters, notably risk-aversion (γ ), the dif-
fusion parameter for volatility (σV ), the mean reversion of the jump intensity
(κλ), the diffusion parameter for jump intensity (σλ), and the dividend growth
idiosyncratic volatility (σD), we design a coarse simulated methods of moments
procedure. Specifically, we search the parameter space to best match the follow-
ing six data moments: mean VIX (19.3), standard deviation of VIX (7.4), aver-
age holding-period return on one-month ATM VIX call option (−48%), average
one-month ATM VIX option Black-76-implied volatility (0.69), monthly auto-
correlation of one-month ATM VIX option Black-76 implied volatility (0.53),
and contemporaneous correlation between VIX and one-month ATM VIX op-
tion Black-76 implied volatility (0.48). The values and data sources for these
moments are summarized in Tables II and V. We match a majority of these
moments well.

We calibrate risk aversion at 14, slightly higher than that in Bansal and
Yaron (2004) (10), Bollerslev, Tauchen, and Zhou (2009) (10), and Drechsler
and Yaron (2011) (9.5), and higher than that in Wachter (2013) (3) and Eraker
and Wu (2017) (8). Intuitively, the high-risk aversion arises from the effort to
reconcile sizable premia on VIX derivatives (high-risk prices) with low con-
sumption growth volatility (low-risk prices), while maintaining a reasonable
stock market leverage φ.

We calibrate σV at 0.16. Obviously, as a volatility-of-volatility parameter, it
heavily influences VIX volatility, VIX derivatives premia, the probability dis-
tribution of VIX, and thus the contemporaneous correlation between VIX and
one-month ATM VIX option Black-76 implied volatility. The parameter σV is
again not a substitute for risk aversion since a too large σV would make the
model behave like a single-factor model. The parameter κλ is calibrated at a
high value, 12, in an effort to match a low monthly autocorrelation of one-
month ATM VIX option Black-76 implied volatility. Note that the latter is not
monotonically decreasing in the former because as κλ increases, the second fac-
tor, λt , becomes shorter-lasting and impacts equilibrium VIX option price less
(note that σ 2

t is also a volatility-of-volatility factor that impacts VIX option
price). Finally, we set σλ = 2.6 and σD = 0.1 in order to match the mean and
standard deviation of VIX and VIX option premia and implied volatility. Note
that VIX derivative (futures and option) premia are generally decreasing with

15 The number 11.4 is obtained as follows: we take monthly data of the VIX index from CBOE,
identify all months during which VIX rises, and then take the mean of the largest 15. Given the
period 1990 to 2020, the number 15 is consistent with our earlier calibration that jumps are on
average once every other year.
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Table V
Simulation: Selected Model Moments

The table reports model moments and their comparison with U.S. data. The model is simulated at
a monthly frequency (dt = 1/12) and simulated data are then aggregated to an annual frequency.
All the moments in the first panel are on an annual basis. �c denotes log consumption growth
rate, �d log dividend growth rate, pd log price-dividend ratio, re

t log return on the dividend claim,
and r f

t yield on one-year riskless bond. All the moments in the second panel are on a monthly
basis, but the two variables VIXt (risk-neutral one-month log equity return volatility index) and
imp_volt (Black-76 implied volatility for one-month ATM VIX option) are themselves annualized.

Model U.S. Data Data Source

E[�c] 2.96 1.80 BY2004
σ (�c) 3.08 2.93 BY2004
AC1(�c) 0.27 0.49 BY2004
E[�d] 5.84 4.61 CRSP
σ (�d) 11.56 11.49 BY2004
AC1(�d) 0.24 0.21 BY2004
corr(�c,�d) 0.69 0.59 DY2011
E[exp(pd)] 21.98 26.56 BY2004
σ (pd) 9.14 29.00 BY2004
AC1(pd) 0.04 0.81 BY2004
E[re

t − r f
t ] 8.81 8.33 Ken French

σ (re
t ) 17.71 18.31 CRSP

E[r f
t ] 0.18 0.86 BY2004

σ (r f
t ) 2.86 0.97 BY2004

E[VIXt ] 19.41 19.28 CBOE
σ (VIXt ) 7.51 7.42 CBOE
AC1(VIXt ) 0.80 0.84 CBOE
E[imp_volt] 71.84 68.80 CBOE
σ (imp_volt ) 12.64 14.30 CBOE
AC1(imp_volt ) 0.49 0.53 CBOE
corr(VIXt , imp_volt ) 0.32 0.48 CBOE

σD, as the dividend idiosyncratic risk contained in σD is not priced in equilib-
rium and thus contributes only to the constant component of the VIX index,
thereby decreasing the exposure of VIX (derivative) returns to σ 2

t and λt .

B. Simulation Results

B.1. General Moments

Table V displays moments from a simulation of the model at calibrated
parameters, as well as their counterparts in U.S. data. The model is dis-
cretized using an Euler approximation and simulated at a monthly frequency
(dt = 1/12) for 100,000 months. Simulating the model at higher frequencies
produces negligible differences in the results. We then aggregate simulated
data to compute model moments primarily reported on a monthly or annual
basis. As seen in the table, we match a majority of the key moments that
we are interested in. In particular, we match average consumption growth
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volatility fairly well: 3.08% in the model versus 2.93% in the data. Notably,
we match the correlation between consumption and dividend growths closely:
0.69 in the model versus 0.59 in the data. This outperforms leading asset pric-
ing models, as, for example, the correlation is 0.31 in Bansal and Yaron (2004),
0.32 in Drechsler and Yaron (2011), and 1 in Wachter (2013), implying that
the balance between systematic and idiosyncratic risks in dividend growth is
more reasonable in our model. In terms of the equity premium, we overshoot
slightly, as our model produces 8.81% per annum. This compares to 8.33% in
the CRSP distributed in Ken French’s publicly available Mkt-Rf time series.
Our model produces an unconditional stock market volatility of 17.71%, which
compares to 18.31% in post-1990 S&P 500 data.16 Our model generates an av-
erage (one-year) risk-free rate on par with what we see in the data, though the
model-implied volatility of the risk-free rate is a bit higher.

Our model does not match the observed (log) price-dividend ratio well. Em-
pirically observed price-dividend ratios vary substantially over time and dis-
play an annualized autocorrelation that exceeds anything we could expect to
generate with our model. This is a natural consequence of the fact that our
model structure is geared toward explaining derivatives data and calibrated
to do so at a relatively high frequency. Price-dividend ratios display annual-
ized persistence that far exceeds that seen in high-frequency derivatives-based
variables such as VIX and VVIX. Adding additional state variables, such as
those in models by Campbell and Cochrane (1999) (habits), Bansal and Yaron
(2004) (long-run persistent consumption growth), and Wachter (2013) (persis-
tent disaster risk factor) helps the model fit the price-dividend data better.
In Section IV of the Internet Appendix, we solve and calibrate an extended
version of our baseline model in which the introduction of persistent long-run
growth risks brings the volatility and persistence of the price-dividend ratio
substantially closer to the data while leaving all the other moments largely un-
affected. In the Internet Appendix, we also report additional model moments
as well as return predictability, and discuss how the shortfall in long-term re-
turn predictability can be addressed in an extended three-factor model.

Importantly, for the purposes of our study, we match the mean and stan-
dard deviation of the VIX index almost exactly. The fact that mean VIX (19.41)
is higher than equity return objective volatility (17.71) illustrates the model’s
ability to generate a large unconditional VRP close to that in the data. The
monthly autocorrelation of the simulated VIX index is 0.8, close to 0.84 in
the data. Turning to the model’s ability to match key moments of VIX op-
tions data, we see that the average implied volatility for one-month ATM VIX
options, denoted as E(imp_volt ), is estimated at 71.84 in the model simula-
tions, which compares to 68.8 in the data. The model produces a volatility of
the simulated VIX-implied volatility, denoted as σ (imp_volt ), of 12.64 versus
14.3 in the data—a slight miss on the low side. The model also produces a

16 We compare our estimate to SPX volatility using data collected after 1990 to make the esti-
mate comparable to the average VIX. The CRSP value-weighted index return over the risk-free
rate has an annual volatility of about 20.30% using data from 1927 to 2020.
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monthly autocorrelation of one-month ATM VIX-implied volatility, denoted as
AC1(imp_volt ), of 0.49 versus 0.53 in the data.

Our model matches the observed positive but imperfect correlation between
the implied VIX volatility and VIX at 0.32 versus 0.48 in the data. It is use-
ful to consider this in relation to a model in which the arrival intensity of
volatility jumps is constant λt = λ (Eraker and Wu (2017)) or volatility-driven
λt = λ0 + λ1σ

2
t (Drechsler and Yaron (2011)). In these cases, VIX2 would be a

linear function of σ 2
t and thus derive its properties. From this, it follows that

the local variance of VIX2 is a linear function of σ 2
t , or equivalently, VIX 2

t . This
shows that VIX-option-implied volatility (or simply vol-of-vol) should be (either
positively or negatively) perfectly correlated with VIX itself.

Our two-factor model breaks up the otherwise rigid correlation between VIX
and vol-of-vol by having an additional self-exciting λt factor. The latter typi-
cally drives VIX and vol-of-vol in the same direction as follows. When λt in-
creases, it first drives VIX up as VIX loads positively on it. It second drives up
the prices of VIX call options and thus implied vol-of-vol. Huang et al. (2019)
present empirical evidence suggesting that VIX and vol-of-vol carry negative
risk premia, which is true in our model: VIX is an increasing function of σ 2

t and
λt , both of which have negative market risk prices, so has VIX. Since vol-of-vol
also loads positively on σ 2

t and λt , it too carries a negative risk price. However,
Huang et al. (2019) propose a model in which stock market spot variance fol-
lows a mean-reverting process in which volatility is driven by an independent
diffusion process. The independence assumption counterfactually implies that
the correlation between VIX2 and volatility-of-volatility (or VVIX) is zero.17

B.2. VIX Futures Returns

Table VI compares average returns and return standard deviations for VIX
futures prices computed from the data (see Eraker and Wu (2017)) and our
model. We report average daily arithmetic and logarithmic returns as well as
return standard deviations by resimulating our model at a daily frequency to
facilitate comparison with the results in Eraker and Wu (2017). For one-month
contracts, both log and arithmetic returns are roughly the same between the
model and the data. At longer horizons, the model generates a too high (neg-
ative) risk premium. This is well known in the variance risk literature. In
fact, Dew-Becker et al. (2017) report positive returns to long-maturity variance
swaps, a finding that cannot be reconciled with a negative volatility risk pre-
mium. Our model also matches the observed daily return standard deviations
of VIX futures almost exactly, although these moments were never targeted
in our parameter calibration. The VRP is always positive in our model, which
follows from the fact that VRP is a positive linear function of two positive
state variables.

17 The HSST model implies that VIX 2
t is a linear function of stock market variance, Vt . It fol-

lows that we can write dVIX 2
t = (a + bVIX 2

t )dt + c
√
ηtdWt where ηt is a mean-reverting diffusion

independent of Vt and therefore VIX 2
t .
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Table VI
Simulation: VIX Futures Returns

This table reports descriptive statistics for model simulated VIX futures returns. R1 is the daily av-
erage arithmetic constant-maturity return, R2 is the daily average logarithmic constant-maturity
return, and Std is the standard deviation of daily logarithmic constant-maturity returns. Data
moments are from Eraker and Wu (2017). All numbers are in percentages.

Maturity R1 R2 Std

Model
One month −0.10 −0.18 3.75
Two months −0.09 −0.14 3.12
Three months −0.08 −0.12 2.71
Four months −0.07 −0.10 2.40
Five months −0.06 −0.08 2.14
Data
One month −0.12 −0.20 3.98
Two months −0.07 −0.11 3.00
Three months −0.01 −0.04 2.47
Four months −0.03 −0.05 2.21
Five months −0.01 −0.03 2.01

To better understand how negative average VIX futures returns are gener-
ated in the model, Figure 7 shows the expected returns under different market
conditions (low versus high VIX). As in Eraker and Wu (2017), figure 7, our
model generates a consistent positive difference between the Q (risk-neutral)
and P (objective) expected path of VIX, irrespective of the initial condition.
Since expected returns are given by EP

t (VIXt+τ )/EQ
t (VIXt+τ ) − 1, this implies

that expected VIX futures returns are always negative in our model.

B.3. SPX-Option-Implied Volatilities

Before proceeding to our key focus, VIX options, we discuss our model’s
ability to accurately capture SPX-option-implied volatilities. Figure 8 illus-
trates the Black and Scholes (1973) implied volatilities for SPX put options
in our model’s steady states. The implied volatilities resemble those we see
in the data well. First, the levels of ATM- and OTM-implied volatilities for
various maturities are on par with those in the data. Second, fixing mon-
eyness, the implied volatility term structure is upward sloping for ATM op-
tions and gradually transitions to downward sloping for (far) OTM options.
Third, the implied volatility curve is decreasing with the strike for most strike
ranges, consistent with a highly left-skewed risk-neutral distribution of SPX
returns.18

18 See Bates (2000), Broadie, Chernov, and Johannes (2007), Eraker (2004), Pan (2002), Santa-
Clara and Yan (2010), Backus, Chernov, and Martin (2011), and Seo and Wachter (2019), among
others, for models that generate left skewness. In our model, left skewness is endogenously
achieved through the volatility feedback mechanism.
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Figure 7. VIX futures curves and holding period returns. The figure illustrates conditional
VIX futures term structures and conditional expected holding period returns on VIX futures in the
model. Left: VIX futures curves (Q) and the objective-measure expected payoffs (P). Right: expected
holding period return, EP

t (VIXt+τ )/EQ
t (VIXt+τ ) − 1, to a long VIX futures position. State variables

conditioned upon for each row are as follows. First row: steady-state σ 2
t and λt ; second row: low σ 2

t
and steady-state λt ; third row: high σ 2

t and steady-state λt ; fourth row: steady-state σ 2
t and low λt ;

last row: steady-state σ 2
t and high λt . (Color figure can be viewed at wileyonlinelibrary.com)

B.4. VIX-Option-Implied Volatilities

Table I, right panel, reports VIX-implied volatilities from our model and is
thus comparable to Table I, left panel, which uses real data. At short maturities
and low strikes, our model mildly undershoots implied volatility, as seen for the
20 strike, which averages 104% implied volatility in the data versus 88% in
our model. This is not a significant deviation when considering that the size of
the bid-ask spread often exceeds 20 implied volatility points—see Figure 2. At
higher strikes, our model generates data that are close to what is reported in
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Figure 8. Black-Scholes-implied volatility curves for SPX options. This figure plots (annu-
alized) implied volatility curves computed from equating the Black-Scholes (1973) option pricing
formula with the SPX option price in the model at steady state. The horizontal axis denotes strike
normalized by SPX. Implied volatilities are computed for SPX options with four maturities: 1, 2,
3, and 6 months. (Color figure can be viewed at wileyonlinelibrary.com)

Table I, left panel. For example, at a 30 strike, the data average 126% implied
vol, which compares to 121% in the model. At a strike of 40, the numbers are
135% and 134%, respectively. At the six-month horizon, our model overshoots
implied volatilities by roughly 5 percentage points across all strikes. This is
evidence that mean reversion of VIX in the model is slightly slower than that
in the data. On the other hand, the autocorrelation of VIX in the model (0.80)
is smaller than that in the data (0.84), suggesting, in contrast, that VIX mean
reversion in the model is slightly faster than that in the data. The current
parameter choices reflect a balance struck between those tensions.

Figures 9 and 10 further illustrate the implied volatility patterns generated
by our model. While Figure 9 shows the steady-state implied volatilities and
pretty much illustrates the patterns in Table I, right panel, Figure 10 shows
what happens when we condition on a high and low initial VIX. In the low-VIX
case, where we set the initial state variables so low as to generate a VIX of 12.6,
we see that the implied volatility curves are almost everywhere increasing and
concave. This closely resembles the patterns we see in the data on April 26,
2017 (Figure 2 bottom). The top panel shows that under a high initial VIX, the
implied volatility curves have changed to something that looks almost flat and
marginally convex especially at the left end. Again, this strikingly resembles
the data we see on November 12, 2008 (Figure 2 top).

To understand this contrast, note that two forces shape VIX-option-implied
volatility curves. First, equilibrium VIX-squared is linear in σ 2

t and λt , but
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Figure 9. Black-76 implied volatility curves for VIX options. This figure plots (annualized)
implied volatility curves computed from equating the Black (1976) futures option pricing formula
with the VIX option price in the model at steady state. The horizontal axis denotes the absolute
value of the strike. Implied volatilities are computed for VIX options with four maturities: 1, 2, 3,
and 6 months. (Color figure can be viewed at wileyonlinelibrary.com)

driven mainly by σ 2
t . Therefore, the implied volatility is shaped by the risk-

neutral conditional distribution of σ 2
t . Second, the option is written on the

VIX, the square root of VIX-squared. The square-root payoff structure carries a
moderate effect on distribution shape, that is, a square-root transform reduces
(increases) a random variable’s right (left) skewness. Now consider the shapes
of implied volatility curves across the two different market conditions in order.

The concavity in implied volatility seen in the low-VIX state is related to
the fact that, in order to generate a low VIX, both state variables are set low.
When λt is low it mean-reverts fast so that during the option’s lifetime, it likely
experiences a considerable increase. By contrast, σ 2

t mean-reverts slowly and
remains persistently low unless there is a jump. The σ 2

t dynamics described
by equation (21) show that the effect of jumps dominates the distribution of σ 2

t
and thus VIX-squared, inducing a fat right tail in the distribution of squared-
VIX. This again leads to an increase in implied volatility across strikes. The
moderate effect of the square root transformation from VIX-squared to VIX,
however, works in the opposite direction by dampening the right-skewness
of VIX’s distribution, which is why the implied volatility curve is concave. In
other words, without the square-root payoff structure, implied volatility is
convexly increasing in the strike, whereas without the possibility of jumps,
implied volatility would decrease sharply beyond a certain threshold strike
and also would undershoot its data counterpart. Only combining a possibility
of jumps and a square-root payoff structure can deliver a concavely increasing
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Figure 10. Black-76 implied volatility curves for VIX options: conditional analysis. The
figure plots (annualized) implied volatility curves for VIX options in the model conditional on
high and low initial VIX. In the top panel, we set both state variables very high: σ 2

t = 10σ 2
ss and

λt = 10λss, implying a very high VIX, 54.3. In the bottom panel, we set both state variables at
minimum values: σ 2

t = λt = 0, implying a small VIX, 12.6. (Color figure can be viewed at wileyon-
linelibrary.com)

implied volatility curve, not only in low-volatility times (Figure 10) but also in
average times (Figure 9).

In contrast, in order to generate a high VIX, simultaneously we need both
high spot volatility σt and high jump arrival intensity λt . The high probability
of a jump arrival fattens the right tail of the conditional distribution for VIX
in high-VIX regimes, generating high implied volatilities for VIX options with
high strikes. This counters the moderate effect of the option’s square-root pay-
off structure and generates a relatively heavy right tail of VIX’s distribution,
preventing the implied volatility curve from sharply sloping downward to the
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Figure 11. Average returns on VIX options. This top (bottom) panel plots average (monthly)
returns on VIX calls (puts) in the model. In each case, we consider options with four maturities: 1,
2, 3, and 6 months, and the horizontal axis denotes the strike of the relevant option normalized by
its underlying asset price. (Color figure can be viewed at wileyonlinelibrary.com)

right. The fact that σt is high also increases the volatility of σ 2
t itself through

the square-root diffusion term, assigning fat tails to both sides. Reinforced by
the moderate effect of the square-root payoff structure that contributes to left
skewness, VIX now has a particularly fat tail at the left end, making the im-
plied volatility curve convex there.

B.5. VIX Option Returns

Figure 11 reports average returns on holding VIX call and put options to
maturity. All returns are normalized to a monthly frequency. Some striking
patterns can be seen. First, the model generates a negative (positive) premium
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Table VII
Simulation: VIX Option Returns

The table reports model moments of returns on holding VIX options for maturities of one and six
months. ITM and OTM are defined as 15% in-the-money and 15% out-of-the-money. Sharpe ratios
are annualized. All other numbers are based on buy-and-hold returns.

CALLS PUTS

ITM ATM OTM ITM ATM OTM

One-Month Maturity
Mean −0.14 −0.24 −0.36 0.05 0.06 0.07
Std 1.23 2.12 3.18 0.68 1.09 2.47
Sharpe −0.40 −0.40 −0.39 0.24 0.18 0.10
Skew 4.46 7.15 10.42 0.05 0.76 3.10
Kurt 39.49 83.93 162.06 2.39 2.89 15.80

Six-Month Maturity
Mean −0.45 −0.53 −0.58 0.15 0.16 0.17
std 1.25 1.41 1.52 0.65 0.83 1.22
Sharpe −0.52 −0.53 −0.54 0.32 0.27 0.19
Skew 3.53 4.27 5.06 −0.50 −0.08 0.56
Kurt 18.61 25.65 34.85 2.32 1.88 1.98

for VIX call (put) options, intuitively because the payoff of a VIX call (put) is
a positive (negative) bet on σ 2

t and λt , both of which are negatively priced in
equilibrium. In other words, for market participants, VIX call options repre-
sent insurance against possible spikes in σ 2

t and λt , and thus, a negative pre-
mium is generated. Second, the model implies that, ceteris paribus, shorter-
maturity VIX options always carry a greater premium than their longer-
maturity counterparts, which implies that the shorter the maturity is, the
more excessively expensive (cheap) the call (put) is. This result is, in principle,
consistent with the downward-sloping term structure of VIX-option-implied
volatility shown in Table I, right panel. Below we show that this is true in
the VIX-implied volatility data. Third, the premia for both call and put op-
tions are decreasing with moneyness, showing that the more OTM the VIX
call (put) is, the more pronounced its role as a bet on (against) volatility and
volatility-of-volatility. This result is, in principle, consistent with the upward-
sloping VIX-option-implied volatility curve across strike shown in Table I, right
panel.

Table VII further reports returns to VIX options in our model in greater
detail. Here, ITM (OTM) indicates 15% in (out) -of-the-money. Given the VIX
futures price is most of the time close to 20, 15% corresponds to three points, so
this table is directly comparable with Table II. A few comments on the similar-
ities and dissimilarities between the data averages and the model are in order.
First, the model generates negative returns to call options and positive returns
to put options, consistent with the data. Second, the model generates negative
short maturity (one-month) call returns ranging from −14% (ITM) to −36%
(OTM), which compare to -33% (ITM) and -60% (OTM) in the data. Keep in
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mind, however, that over the course of our sample, VIX spiked dramatically on
several occasions, including the financial crisis of 2008, the events of February
5, 2018 discussed in Section II, and the Covid-19 crisis, leading to large pos-
itive returns for OTM VIX calls. Turning to the longer-maturity (six-month)
call option average returns, our model matches the data well: -45% (ITM) to
-58% (OTM) in the model versus -53% (ITM) and -61% (OTM) in the data. An-
other commonality between the model and the data is that the term structure
of (absolute) returns on VIX call is downward sloping. For example, for ATM
calls, the monthly return is −0.24 (−0.48) for the one-month maturity versus
−0.53/6 ≈ −0.09 (−0.59/6 ≈ −0.1) for the six-month maturity in the model
(data).

The model generates positive average returns on ITM, ATM, and OTM short-
and long-maturity put options, consistent with the data in Table II. The quan-
tities are somehow different, with the average return heavily dependent on
moneyness in the data, but not in the model. In particular, the data show that
short-maturity OTM puts have large average returns due to the 2008 financial
crisis and Covid-19 crisis periods.

Turning to an examination of higher order return moments, we see that our
model generates patterns that are strikingly similar to what we estimate from
data. For example, one-month maturity call returns have an estimated stan-
dard deviation of 157% in the data versus 123% in the model for ITM, 305%
versus 212% for ATM, and 498% versus 318% for OTM. The return standard
deviations are matched even better for short-maturity puts, as one-month-
maturity put returns have an estimated standard deviation of 66% in the data
versus 68% in the model for ITM, 101% versus 109% for ATM, and 221% ver-
sus 247% for OTM. At longer maturities, our model slightly undershoots return
standard deviations for both calls and puts. Notably, we also match the esti-
mated skewness and kurtosis coefficients fairly closely, especially for the puts.
One exception here is the large model-implied kurtosis for OTM one-month-
maturity calls: this coefficient is 162.06 in the model versus 68.29 in the data.
In interpreting these deviations, the reader should keep in mind that higher
order moments such as skewness and kurtosis are difficult to accurately esti-
mate from a relatively short sample of option returns.

C. VIX Options as Hedges For SPX Options

To get a clearer insight into the workings of our model economy, we present
results of a variance decomposition of data simulated from the model. We con-
dition on the initial values of the state variables σ 2

t and λt so as to generate
high and low volatility states or VIX states. In each case, we simulate a large
number (N = 50,000) of realizations of state variables one day ahead and com-
pute option prices and VIX futures prices. We then ask which of the state vari-
ables are important to various states of the world by running regressions of
the price changes on changes in state variables as well as squared and cubed
state variables. The latter allows us to approximately pinpoint the importance
of convexity in option prices.
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Table VIII
Variance Decomposition

This table reports decompositions of variance in different assets into fractions attributable to cash
flow risk (Dt), volatility risk (σ 2

t ), second-order volatility risk ((σ 2
t )2), third-order volatility risk

((σ 2
t )3), jump intensity risk (λt ), and second-order jump intensity risk ((λt )2), conditional on a high-

VIX, medium-VIX, and low-VIX regime, respectively. Definitions of OTM, ATM, and VIX futures
characteristics are as in Figure 12. All numbers are in percentages. We simulate the model (start-
ing from four different initial states) for two periods (days) to obtain the changes in all relevant
variables. We repeat the simulation 50,000 times to obtain 50,000 observations and then obtain
variance decomposition from linear regressions.

Asset Dt σ 2
t (σ 2

t )2 (σ 2
t )3

λt (λt )2

High-VIX regime I: σ 2
t = 10σ 2

ss, λt = 10λss,VIXt = 54.3
ATM SPX Put 7.7 3.5 77.6 10.9 0.3 0.0
OTM SPX Put 0.0 10.0 55.3 34.6 0.0 0.0
ATM VIX Call 0.0 11.7 77.5 10.6 0.0 0.3
OTM VIX Call 0.0 14.2 60.9 24.9 0.0 0.0
VIX Futures 0.0 81.5 11.7 0.6 6.1 0.1

High-VIX regime II: σ 2
t = 5σ 2

ss, λt = 5λss,VIXt = 39.4
ATM SPX Put 18.5 0.2 69.3 11.3 0.7 0.0
OTM SPX Put 0.1 9.3 48.4 42.3 0.0 0.0
ATM VIX Call 0.0 2.2 82.7 14.2 0.4 0.5
OTM VIX Call 0.0 5.6 38.1 56.2 0.0 0.1
VIX Futures 0.0 81.7 10.5 0.7 7.0 0.1

Medium-VIX regime: σ 2
t = σ 2

ss, λt = λss,VIXt = 20.9
ATM SPX Put 41.4 33.0 19.2 5.3 1.1 0.0
OTM SPX Put 0.3 4.5 37.9 56.0 1.3 0.0
ATM VIX Call 0.0 27.7 47.8 21.2 3.0 0.3
OTM VIX Call 0.0 5.9 89.1 4.5 0.4 0.0
VIX Futures 0.0 79.0 11.6 1.7 7.7 0.0

Low-VIX regime: σ 2
t = 0.01σ 2

ss, λt = 0.01λss,VIXt = 12.7
ATM SPX Put 98.0 1.9 0.0 0.0 0.1 0.0
OTM SPX Put 35.1 0.4 0.0 0.0 64.5 0.0
ATM VIX Call 0.0 89.5 0.0 0.0 10.5 0.0
OTM VIX Call 0.0 23.5 0.6 0.0 75.9 0.0
VIX Futures 0.0 85.5 0.0 0.0 14.5 0.0

The results are presented in Table VIII. Starting from the bottom, we see
that low values of the state variables, consistent with a VIX of 12.7, imply
that ATM SPX options returns are driven almost entirely by cash flow risk
(Dt). OTM SPX options depend less on cash flow risk (35.1%) but heavily on
variation in variance jump risk (λt). Intuitively, OTM SPX options depend pri-
marily on the possibility of a crash occurring, the probability of which is λt .
This is consistent with Bollerslev and Todorov (2011) and Bollerslev, Todorov,
and Xu (2015), among others, who derive option-based tail-risk measures from
far OTM options and argue that these are priced state variables. The convexity
terms, (σ 2

t )2, (σ 2
t )3, and (λt )

2, do not matter in the low-volatility regime.
VIX options and futures never depend on cash flow risk Dt . In the low-VIX

regime, they depend linearly on σ 2
t and λt . In the steady state and higher-VIX
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Figure 12. Hedge regressions. The figure shows β
vix option
t computed by the following re-

gression using model-simulated data: �Pt = αt + βSPX
t � ln SPXt + βvix futures

t �Ft + β
vix option
t �Ct +

errort , where Pt is a half-month 30% OTM SPX put normalized by the SPX index (for stationarity
in long-sample simulation), ln SPXt is the log market index, Ft is the half-month VIX futures, and
Ct is a half-month 50% OTM VIX call. Consistent with our data regressions in the empirical sec-
tion, we select relatively far-OTM VIX calls and SPX puts. The regression is run each day using
daily price changes with a rolling window of one month. We then average daily coefficients within
each month and plot βvix option

t and VIXt as a monthly time series. (Color figure can be viewed at
wileyonlinelibrary.com)

regimes, we see that both VIX and SPX options depend increasingly on the
convexity terms. This is, in part because, as we increase the jump frequency λt ,
jump realizations become more important, leading to the squared and cubed
σ 2

t terms instrumenting for the convexity in the options prices for both VIX
and SPX.

Our variance decompositions are based on state variables that are not ob-
servable (to econometricians): the state variables cannot be traded, and there
are no instruments that load on the state variables only, rendering the market
incomplete. Options traders can hedge SPX or VIX options using a standard
delta hedge through index futures or ETFs, and they can hedge volatility ex-
posure with variance claims such as VIX futures. Recall that Figure 6 depicts
the performance of hedging SPX options using stock prices (SPY), VIX futures,
and VIX call options, and shows that during crisis periods, VIX calls signifi-
cantly improve hedging performance. Figure 12 replicates this exercise using
model-simulated data. As seen, our model replicates the essential feature of
the data: during periods of low volatility, the estimated factor loading on VIX
call options fluctuates around zero, whereas during periods of high volatility,
the estimated factor loading becomes positive. The pattern can be traced back
to information contained in the variance decomposition (Table VIII). First, dur-
ing normal times when VIX is low (λt and σ 2

t low), variation in Dt dominates
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Figure 13. Comparative statics with respect to risk aversion. The figure plots steady-state
conditional model moments (left) and market risk prices (right) as a function of risk aversion, γ .
The left panel depicts VIX (VIX), variance risk premium (VRP), implied volatility of ATM VIX
options (implied vol-of-vol), instantaneous equity premium (equity premium), one-month VIX fu-
tures premium, and one-month ATM VIX call and VIX put premiums. The right panel depicts the
dependence of the market prices of risk for the model’s three state variables, as represented by
(γ ,−b2,−b3), on risk aversion, γ . The plot uses γ in the range from 1 to 16.1, the upper limit for
the existence of a model solution. (Color figure can be viewed at wileyonlinelibrary.com)

returns to SPX and SPX options. This leads to a low correlation between VIX
calls and SPX puts. Second, during high-VIX periods when σ 2

t are high, varia-
tion in σ 2

t and its polynomial terms dominate variation in SPX options. Since
λt and particularly σ 2

t drive all of the variation in VIX options, the correlation
between SPX and VIX options increases with these variables.

D. Comparative Static Analysis

To gain some additional insights into the workings of our model, we report
results of some comparative statics. In doing so, we also emphasize the ne-
cessity of recursive preferences (γ > 1/ψ) for the model to generate nonzero
VIX derivatives premia. The left panel of Figure 13 shows the comovements of
seven important steady-state conditional model moments with risk aversion.
As shown, the equity premium is sensitive to risk aversion at all levels of risk
aversion: it increases with risk aversion almost linearly when the latter is rel-
atively low, and increasingly fast when the latter becomes higher. Recall from
equation (31) that the equity premium reflects compensation for three sources
of risks corresponding to the model’s three state variables. The pattern of the
equity premium’s variation with risk aversion reflects the fact that market
price of risk for consumption growth increases linearly with γ , whereas the
market prices of risk for volatility and its jump risk increase slowly with γ at
the beginning and increasingly faster afterward.

 15406261, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jofi.13182 by Peking U

niversity H
ealth, W

iley O
nline L

ibrary on [22/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://onlinelibrary.wiley.com


The Price of Higher-Order Catastrophe Insurance 3333

The right panel of Figure 13 shows the impact of risk aversion on the market
prices of risk associated with the three state variables, λ = (γ ,−b2,−b3). Since
the representative agent has recursive preferences (and prefers early resolu-
tion of uncertainties for the current parameter configuration), she is concerned
about variation in her value function in the future, which is affected by the risk
in σ 2

t and λt . Both state variables therefore enter the agent’s pricing kernel
and are priced in equilibrium. However, these two state variables are by na-
ture higher-order. Specifically, σ 2

t measures the spot variance of consumption
growth and thus is a second-order moment in terms of its relation with con-
sumption, while λt governs the arrival intensity of jumps in σ 2

t and has third-
or even higher-order effects on consumption. Accordingly, market prices of risk
associated with σ 2

t and λt increase relatively slowly with risk aversion.
Turning back to the left panel of Figure 13, it remains to check how mo-

ments besides the equity premium vary with risk aversion. VIX increases with
γ , manifesting the former’s dependence on state variables that are priced in
equilibrium. VIX is a risk-neutral measure of market volatility. A larger risk
aversion implies a higher market price of risk associated with σ 2

t and λt , higher
risk-neutral persistence, and higher mean σ 2

t and λt , and a higher VIX. But
this also implies that the average value of VIX increases relative to objective
variance, or put differently, the VRP increases.

The left panel of Figure 13 also shows the steady-state risk premia on one-
month ATM VIX put and call options. As the VIX call (put) option is a (neg-
ative) volatility claim, it earns a negative (positive) premium. Both premia,
however, increase in absolute value with γ asymmetrically: premia in the puts
increase more slowly than the calls. Thus, a larger risk aversion leads in-
vestors to be willing to pay a comparably higher premium for the crash insur-
ance offered by VIX calls than the positive premium they demand for holding
VIX puts.

Finally, Figure 13 speaks to the necessity of the recursive preference as-
sumption in generating nonzero risk premia on VIX derivatives, since all pre-
mia are exactly zero when γ = 1, in which case the Duffie-Epstein recursive
preferences collapse into CRRA preferences. With the latter, neither σ 2

t nor
λt would be priced in equilibrium. This would imply that a claim with mere
exposure to σ 2

t and λt would earn a zero premium.

V. Concluding Remarks

This paper studies the properties of VIX derivatives prices, including re-
turns to buy-and-hold VIX options positions. We document negative return
premia consistent with a negative price of volatility and volatility jump risk.
Our paper follows the well-established literature on consumption-based asset
pricing models in which persistent state dynamics generate risk premia that
exceed those seen under time-additive preferences by separating risk-aversion
from IES, as in Bansal and Yaron (2004), Eraker and Shaliastovich (2008),
Drechsler and Yaron (2011), Wachter (2013), and many others. Our theoretical
formulation mirrors the general framework outlined in Eraker and Shalias-
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tovich (2008), but has the advantage that it does not require any linearization
approximations in deriving the pricing kernel.

We use this modeling framework to specify a model that features time-
varying consumption volatility and time-varying intensity of jumps in that
volatility process. This is different from the consumption disaster literature,
such as Barro (2006) or Wachter (2013), where disasters occur in consumption
itself. Our model produces a smooth aggregate consumption consistent with
what we see in U.S. data.

Our model replicates many of the observed characteristics of asset market
data: it is within striking distance of the equity premium, unconditional stock
market volatility, the VRP, the correlation between VIX and VVIX, and the
weak persistence in VVIX, but most importantly, for our purposes, it appears
to replicate some of the features we observe in the VIX derivative markets data
with surprising accuracy. First, it replicates large negative average returns to
VIX futures. Second, it replicates with an acceptable degree of accuracy the
return premia seen in VIX options data. This includes the higher order mo-
ments. Third, it replicates the general shape of VIX-option-implied volatility
functions, including the positive skewness and downward-sloping term struc-
ture.

In equity and variance swap options, it is well known that implied volatilities
exhibit convexity (i.e., smile) over strikes. In our VIX option data, the smile is
actually a concave frown for the most part of our sample, and particularly so
when VIX is low. When VIX is high, it surprisingly changes to a convex smile.
Even more surprisingly, our model replicates this empirical phenomenon.

We show that variation in VIX options is not necessarily spanned by SPX
options, as a PCA decomposition shows that VIX options returns contain varia-
tion not seen in SPX options. The model also replicates the time-varying nature
of the hedging relationship between SPX options, the underlying SPX index,
VIX futures, and VIX options. In regressing SPX put option changes on changes
in these variables, we find that VIX options are nearly uncorrelated with SPX
options in low-volatility periods, while the correlation spikes in high-volatility
periods. Our model explains this through essentially time-varying factor load-
ings: when volatility is low, ATM SPX options depend primarily on cash flow
news, while ATM VIX options depend on volatility and jump arrival intensity.
In high-volatility periods, the correlations increase, and VIX call options can
serve as important hedging instruments for SPX puts.

Initial submission: January 15, 2020; Accepted: August 16, 2021
Editors: Stefan Nagel, Philip Bond, Amit Seru, and Wei Xiong
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